Bài tập ôn chương I – Đại số 8 – THCS Lê Quý Đôn

Bài 1: Tìm x, biết:

a) 4\left( 18-5x \right)-12\left( 3x-7 \right)=15\left( 2x-16 \right)-6\left( x+14 \right)

b) 3\left( 2x-1 \right)\left( 3x+1 \right)-\left( 2x-3 \right)\left( 9x-1 \right)=0

c) 2{{\left( x+1 \right)}^{2}}+{{\left( x+3 \right)}^{2}}=3\left( x-2 \right)\left( x+1 \right)

d) 4{{\left( 2x+1 \right)}^{2}}+\left( 4x+2 \right)\left( 2-6x \right)+{{\left( 3x-1 \right)}^{2}}=0

e) {{\left( {{x}^{2}}+x+4 \right)}^{2}}+8x\left( {{x}^{2}}+x+4 \right)+15{{x}^{2}}=0

g) 4{{x}^{4}}-37{{x}^{2}}+9=0

h) {{x}^{4}}+3{{x}^{3}}+{{x}^{2}}-12x-20=0

k) 2{{x}^{4}}+5{{x}^{3}}+13{{x}^{2}}+25x+15=0

Bài 2: Cho a+b+c=2p. Chứng minh rằng: 2bc+{{b}^{2}}+{{c}^{2}}-{{a}^{2}}=4p\left( p-a \right)

Bài 3: Chứng minh rằng các biểu thức sau luôn có giá trị dương với mọi giá trị của x.

a) 9{{x}^{2}}-6x+2                       b) {{x}^{2}}+x+1

c) 2{{x}^{2}}+2x+1                      d) {{x}^{2}}-x+1

Bài 4: Chứng minh rằng biểu thức sau luôn có giá trị âm với mọi giá trị của x.

A=-{{x}^{2}}+2x-7                              B=-5{{x}^{2}}+20x-19

Bài 5: Tìm GTNN của:

A={{x}^{2}}-3x+5                               B=5{{x}^{2}}-4x+2005

C={{\left( 2x-1 \right)}^{2}}+{{\left( x+2 \right)}^{2}}                       D={{x}^{2}}-2xy+2{{y}^{2}}+2x-10y+17

E=\left( 4{{x}^{5}}+2{{x}^{4}}+4{{x}^{3}}-x-1 \right):\left( 2{{x}^{3}}+x-1 \right)

Bài 6: Tìm GTLN của:

A=4-{{x}^{2}}+2x                               B=-3{{x}^{2}}+4x-2004

C=-5{{x}^{4}}+3{{x}^{2}}+123                            D=2:\left( 3{{x}^{2}}-4x+8 \right)

Bài 7: Rút gọn biểu thức sau bằng cách nhanh nhất:

A={{\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}^{2}}-{{\left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)}^{2}}

B=\left( 3{{x}^{3}}+3x+1 \right)\left( 3{{x}^{3}}-3x+1 \right)-{{\left( 3{{x}^{3}}+1 \right)}^{2}}

Bài 8: Tìm số tự nhiên n để giá trị các biểu thức sau là số nguyên tố:

a) {{n}^{4}}+4

b) {{n}^{4}}-11{{n}^{2}}+25

c) {{\left( {{n}^{2}}-15 \right)}^{2}}+64

Bài 9: Chứng minh:

a) {{2}^{35}}+292 chia hết cho 260

b) {{n}^{2}}+3n+5 không chia hết cho 121

Bài 10: CMR: B={{a}^{4}}-4{{a}^{3}}-4{{a}^{2}}+16a chia hết cho 384 (với a là số tự nhiên chẵn, a > 4)

Bài 11: Tìm số tự nhiên n để số A là số chính phương với A={{n}^{2}}-n+2.

Bài 12: Phân tích đa thức thành nhân tử

A={{\left( {{x}^{2}}+4x+8 \right)}^{2}}+3x\left( {{x}^{2}}+4x+8 \right)+2{{x}^{2}}                    B=\left( x+1 \right)\left( x+2 \right)\left( x+3 \right)\left( x+4 \right)-24

C=4\left( {{x}^{2}}+15x+50 \right)\left( {{x}^{2}}+18x+72 \right)-3{{x}^{2}}                       D={{x}^{11}}+x+1

E={{\left( {{x}^{2}}-8 \right)}^{2}}+36                                                   F={{x}^{4}}-{{x}^{3}}+2{{x}^{2}}-11x-5

Bài 13: Cho a, b, c là độ dài ba cạnh của một tam giác. Biểu thưc M=4{{a}^{2}}{{b}^{2}}-\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right) có thể nhận  giá trị âm hay không?

Bài 14: Tìm số hữu tỉ a, b sao cho đa thức:

a) 6{{x}^{4}}-7{{x}^{3}}+a{{x}^{2}}+3x+2 chia hết cho {{x}^{2}}-x+b

b) 2{{x}^{4}}-6{{x}^{3}}+a{{x}^{2}}-7x+3 chia hết cho {{x}^{2}}-x+b

Bài 15: Cho \left( x+y \right)\left( y+z \right)\left( z+x \right)=8xyz với x, y, z là các số dương. Chứng minh: x=y=z

Bài 16: Tìm số nguyên x để thương của phép chia sau có giá trị nguyên:

a) \left( 3{{x}^{3}}+13{{x}^{2}}-7x+5 \right);\left( 3x-2 \right)

b) \left( 2{{x}^{5}}+4{{x}^{4}}-7{{x}^{3}}-45 \right):\left( 2{{x}^{2}}-7 \right)

c) \left( {{x}^{6}}-{{x}^{4}}-2{{x}^{2}}+9 \right):\left( {{x}^{4}}+{{x}^{2}} \right)

d) \left[ {{x}^{3}}{{\left( {{x}^{2}}-7 \right)}^{2}}-36x \right]:5040

Toán cấp 2 © 2012 Toán cấp 2