Đề kiểm tra chất lượng Toán 9 THCS Chu Văn An 2018-2019

Đề kiểm tra chất lượng môn Toán lớp 9 trường THCS Chu Văn An quận Tây Hồ, TP Hà Nội, năm học 2018-2019. Ngày thi: 30/09/2018Thời gian làm bài: 90 phút.

Câu 1 (2,0 điểm). Thực hiện phép tính:

a) (\sqrt{{24}}-\sqrt{{48}}-\sqrt{6}).\sqrt{6}+12\sqrt{2})

b \left( {\sqrt{{\frac{1}{5}}}-\sqrt{{\frac{{16}}{5}}}+\sqrt{5}} \right):\sqrt{{20}}

c) \sqrt{{21+3\sqrt{{48}}}}-\sqrt{{21-3\sqrt{{48}}}}

Câu 2 (2,0 điểm). Cho biểu thức

A=\frac{{\sqrt{x}}}{{\sqrt{x}-1}}+\frac{3}{{\sqrt{x}+1}}-\frac{{6\sqrt{x}-4}}{{x-1}}   (x\ge 0;x\ne 1)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức khi x=7-2\sqrt{6}

c) Tìm giá trị nhỏ nhất của A

Câu 3 (2,0 điểm). Giải các phương trình sau:

a) \sqrt{{6x-2}}=4

b) \frac{1}{3}\sqrt{{x-2}}-\frac{2}{3}\sqrt{{9x-18}}+6\sqrt{{\frac{{x-2}}{{81}}}}=-4

c) \sqrt{{9{{x}^{2}}+12x+4}}=4x

d) \sqrt{{x-2\sqrt{{x-1}}}}=\sqrt{{x-1}}

Câu 4 (3,5 điểm).

Cho tam giác ABD, AB = 6cm; AD = 8cm; BD = 10cm, đường cao AM.

a) Chứng tỏ tam giác ABD là tam giác vuông. Tính MA; MB

b) Qua B kẻ tia Bx // AD; tia Bx cắt tia AM ở C. Chứng minh AM.AC = BM.BD

c) Kẻ CE vuông góc với AD (E\in AD); CE cắt BD tại I. Chứng tỏ B{{M}^{2}}=MI.MD

Câu 5 (0,5 điểm). Cho các số dương a,b,c thỏa mãn ab+bc+ca=1

Chứng minh rằng: \frac{1}{{ab}}+\frac{1}{{bc}}+\frac{1}{{ca}}\ge 3+\sqrt{{\frac{{(a+b)(a+c)}}{{{{a}^{2}}}}}}+\sqrt{{\frac{{(b+c)(b+a)}}{{{{b}^{2}}}}}}+\sqrt{{\frac{{(c+a)(c+b)}}{{{{c}^{2}}}}}}

Toán cấp 2 © 2012 Toán cấp 2