Bài tập Hình học 9 chương 2 năm học 2018-2019

Bài 1: Cho nửa đường tròn tâm O đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đến AB. Vẽ đường trong (M;MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M (C, D là các tiếp điểm khác H).

a) Chứng minh: C, M, D thẳng hàng và CD là tiếp tuyến của (O)

b) Chứng minh: Khi M di chuyển trên AB thì tổng AC + BD không đổi.

c) Giả sử CD và AB cắt nhau tại I. Chứng minh: OH.OI không đổi.

Bài 2: Cho nửa đường tròn tâm O đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d với đường tròn. Gọi E, F lần lượt là chân đường cao các đường vuông góc kẻ từ A, B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng:

a) CE = CF

b) AC là tia phân giác của $ \widehat{{BAE}}$

c) $ C{{H}^{2}}=AE.BF$

Bài 3: Cho nửa đường tròn tâm O đường kính AB. Từ A, B vẽ hai tiếp tuyến Ax, By với nửa đường tròn. Từ M là điểm trên nửa đường tròn (O) (M không là điểm chính giữa cung AB) vẽ tiếp tuyến lần lượt cắt Ax, By tại điểm C, D.

a) Chứng tỏ AC + BD = CD

b) Chứng minh tam giác COD vuông

c) Tia BM cắt Ax tại P, tia AM cắt By tại Q. Chứng minh ba đường thẳng AB, CD, PQ đồng quy.

Bài 4: Cho nửa đường tròn tâm O đường kính AB. Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Vẽ AD và BC vuông góc với xy.

a) Chứng minh rằng: MC = MD

b) Chứng minh rằng AD + BC có giá trị không đổi khi điểm M di động trên nửa đường tròn.

c) Chứng minh rằng đường tròn đường kính CD tiếp xúc với ba đường thẳng AD, BC và AB

d) Xác định vị trí của điểm M trên nửa đường tròn (O) để cho diện tích tứ giác ABCD lớn nhất.

Bài 5: Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là một điểm bất kỳ thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C, D.

a) Chứng minh đường trong đường kính CD tiếp xúc AB.

b) Gọi E là giao điểm của BC và AD. ME cắt AB tại H

c) Chứng minh: E là trung điểm của đoạn MH

d) Tìm vị trí của M để hình thang ABDC có chu vi nhỏ nhất

e) Tìm vị trí của C, D để hình thang ABDC có chu vi bằng 14cm, biết AB = 4cm

Bài 6: Cho nửa đường tròn tâm O đường kính AB. Vẽ hai tia tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là một điểm thuộc nửa đường tròn (AM < BM). Tiếp tuyến tại M với nửa đường tròn cắt Ax, By lần lượt ở C và D.

a) Tính số đo góc COD

b) Chứng minh rằng đường trong có đường kính CD tiếp xúc với AB

Bài 7: Cho nửa đường tròn tâm O đường kính CD = 2R. Từ C và D kẻ tiếp tuyến Cx và Dy về cùng một phía của nửa đường tròn. Từ một điểm E trên nửa đường tròn (E khác C và D) kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Cx và Dy lần lượt tại A và B.

a) Chứng minh: AB = AC + BD

b) Chứng minh tam giác AOB là tam giác vuông.

c) Gọi F là giao điểm của AD và BC. Chứng minh: EF.AB = AC.BD

Bài 8: Cho nửa đường tròn tâm O, đường kính AB = 2R, E là một điểm tùy ý trên nửa đường tròn (E $ \ne $ A, B). Kẻ 2 tiếp tuyến Ax và By với nửa đường tròn. Qua E kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại M và N.

a) Chứng minh MN = AM + BN và $ \widehat{{MON}}={{90}^{o}}$

b) Chứng minh AM.BN = $ {{R}^{2}}$

c) OM cắt AE tại P, ON cắt BE tại Q. Chứng minh PQ không đổi khi E chuyển động trên nửa đường tròn

Bài 9: Cho nửa đường tròn tâm O, đường kính AB = 2R. M là một điểm tùy ý trên nửa đường tròn $ (M\ne A,B)$. Kẻ hai tiếp tuyến Ax và By với nửa đường tròn. Qua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C và D.

a) Chứng minh CD = AC + BD

b) Chứng minh tam giác COD là tam giác vuông

c) Chứng minh AC.BD = $ {{R}^{2}}$

d) OC cắt AM tại E, OD cắt BM tại F. Chứng minh EF = R

Bài 10: Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Vẽ bán kính OE bất kì. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự ở C, D.

a) Chứng minh rằng CD = AC + BD

b) Tính số đo $ \widehat{{COD}}$

c) Gọi I là giao điểm của OC và AE, gọi K là giao điểm của OD và BE. Tứ giác EIOK là hình gì? Vì sao?

d) Cho $ OC=\sqrt{5};OD=\sqrt{7}$. Tính bán kính đường tròn.

4 Comments

Add a Comment
  1. Cho nửa đường tròn tâm O, đường kính AB=2R, M là một điểm tùy ý trên nửa đường tròn (M#A; B). Kẻ hai tia tiếp tuyến Ax và By với nửa đường tròn. Qua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C và D.
    a/ chứng minh: CD=AC+BD và góc COD=90 độ
    b/ Chứng minh: AC.BD=R^2
    c/ OC cắt AM tại E, OD cắt BM tại F. Chứng minh: EF=R
    d/ Tìm vị trí của M để CD có độ dài nhỏ nhất

  2. lời giải bài 9 ạ

  3. giải giup em bài này với a .
    Cho (O; R) đường kính AB. Vẽ các tiếp tuyến Ax và By nằm về cùng một nửa mặt phẳng. Từ E thuộc (O) ta vẽ tiếp tuyến với đường tròn cắt Ax, By lần lượt tại C và D. a) C/m: AC + BD = CD; = 900 ; R2 = AC.BD b) BC và AD cắt nhau tại M. C/m: ME // AC // BD. c*) Xác định vị trí của E trên (O) để chu vi hình thang ABDC có giá trị nhỏ nhất.

    1. em tham gia nhóm facebook Giải toán cấp 2: https://www.facebook.com/groups/2158306784220150 rồi chụp ảnh bài cần giải để mọi người hỗ trợ nhé.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *