- Nhắc lại định nghĩa, tính chất cơ bản của bất đẳng thức
- Phương pháp chứng minh bất đẳng thức bằng định nghĩa
- Chứng minh bất đẳng thức bằng phương pháp biến đổi tương đương
- Áp dụng bất đẳng thức để chứng minh bất đẳng thức
- Chứng minh bất đẳng thức bằng phương pháp phản chứng
- Chứng minh bất đẳng thức bằng phương pháp làm trội, làm giảm
- Một số loại bài chứng minh bất đẳng thức thường gặp
- Mở rộng một số bất đẳng thức
- Ứng dụng của bất đẳng thức trong Toán THCS
- Một số bài tập bất đẳng thức
- Phương pháp đổi biến chứng minh bất đẳng thức
- Một số ví dụ chứng minh BĐT bằng phương pháp cân bằng hệ số
- Kỹ thuật chọn điểm rơi chứng minh bất đẳng thức
- Một số ví dụ chứng minh BĐT bằng phương pháp hệ số bất định UCT
- Một số ví dụ chứng minh BĐT bằng phương pháp Cauchy ngược dấu
Việc mở rộng một BĐT giúp cho học sinh có cái nhìn tổng quát hơn về BĐT đó và đồng thời có tác dụng trong việc phát triển tư duy, cũng như óc tìm tòi sáng tạo của học sinh.
Việc làm này nên làm thường xuyên ngay trong quá trình dạy.
Ví dụ 1:
Cho a và b là hai số dương. Chứng minh: $ \displaystyle \left( a+b \right)\left( \frac{1}{a}+\frac{1}{b} \right)\ge 4$
Mở rộng: Cho n số dương $ \displaystyle {{a}_{1}},{{a}_{2}},…,{{a}_{n}}$. Chứng minh rằng:
$ \displaystyle \left( {{a}_{1}}+{{a}_{2}}+..+{{a}_{n}} \right)\left( \frac{1}{{{a}_{1}}}+\frac{1}{{{a}_{2}}}+..+\frac{1}{{{a}_{n}}} \right)\ge {{n}^{2}}$
* Gợi ý: Dùng BĐT Cô si để giải
Ví dụ 2:
Cho a và b là hai số dương có tích bằng 1. Chứng minh rằng: $ \displaystyle \left( a+1 \right)\left( b+1 \right)\ge 2$
Mở rộng:
Cho n số dương có tích bằng 1. Chứng minh rằng:
a) $ \left( {{a}_{1}}+1 \right)\left( {{a}_{2}}+1 \right)…\left( {{a}_{n}}+1 \right)\ge {{2}^{n}}$
b) $ \displaystyle \left( {{a}_{1}}+{{a}_{2}} \right)\left( {{a}_{2}}+{{a}_{3}} \right)\left( {{a}_{3}}+{{a}_{4}} \right)..\left( {{a}_{n}}+{{a}_{1}} \right)\ge {{2}^{n}}$
Gợi ý : Dùng BĐT Cô si cô hai số dương để giải
Ví dụ 3:
Cho a và b là hai số dương có tổng bằng 1. Chứng minh rằng:
$ {{\left( a+\frac{1}{b} \right)}^{2}}+{{\left( b+\frac{1}{a} \right)}^{2}}\ge \frac{25}{2}$
Mở rộng:
Cho n số dương $ \displaystyle {{a}_{1}},{{a}_{2}},…,{{a}_{n}}$ có tổng bằng 1. Chứng minh rằng:
a) $ \displaystyle {{\left( {{a}_{1}}+\frac{1}{{{a}_{2}}} \right)}^{2}}+{{\left( {{a}_{2}}+\frac{1}{{{a}_{3}}} \right)}^{2}}+..+{{\left( {{a}_{n}}+\frac{1}{{{a}_{1}}} \right)}^{2}}\ge {{\left( \frac{{{n}^{2}}+1}{n} \right)}^{2}}$
b) $ \displaystyle {{\left( {{a}_{1}}+\frac{1}{{{a}_{1}}} \right)}^{2}}+{{\left( {{a}_{2}}+\frac{1}{{{a}_{2}}} \right)}^{2}}+..+{{\left( {{a}_{n}}+\frac{1}{{{a}_{n}}} \right)}^{2}}\ge {{\left( \frac{{{n}^{2}}+1}{n} \right)}^{2}}$
* Gợi ý : Dùng BĐT Bunhiacốpxki để giải
Ví dụ 4:
Cho a và b là hai số thực thoả mãn a + b = 2. Chứng minh rằng: a4 + b4 ≥ a3 + b3
Mở rộng:
1/ Cho a và b là hai số thực thoả mãn a + b = 2.
Chứng minh rằng: an + bn ≥ an-1 + bn-1 (với n là số tự nhiên chẵn và khác 0)
* Gợi ý : áp dụng cách giải 2 của ví dụ 2 bài 1 phần một số BĐT thường gặp
2/ a) Cho n số thực $ \displaystyle {{a}_{1}},{{a}_{2}},…,{{a}_{n}}$ thoả mãn $ \displaystyle {{a}_{1}}+{{a}_{2}}+..+{{a}_{n}}=n$.
Chứng minh rằng: $ \displaystyle {{a}_{1}}^{4}+{{a}_{2}}^{4}+..+{{a}_{n}}^{4}\ge {{a}_{1}}^{3}+{{a}_{2}}^{3}+..+{{a}_{n}}^{3}$
b) Cho n số thực $ \displaystyle {{a}_{1}},{{a}_{2}},…,{{a}_{n}}$ thoả mãn $ \displaystyle {{a}_{1}}+{{a}_{2}}+..+{{a}_{n}}\ge n$
Chứng minh rằng: $ \displaystyle {{a}_{1}}^{4}+{{a}_{2}}^{4}+..+{{a}_{n}}^{4}\ge {{a}_{1}}^{3}+{{a}_{2}}^{3}+..+{{a}_{n}}^{3}$
*Gợi ý : áp dụng cách giải như bài 2 phần một số BĐT thường gặp
Ví dụ 5:
Cho a và b là hai số thực thoả mãn a + b ≥ 1 . Chứng minh rằng: $ \displaystyle {{a}^{2}}+{{b}^{2}}\ge \frac{1}{2}$
Mở rộng:
Cho n số thực $ \displaystyle {{a}_{1}},{{a}_{2}},…,{{a}_{n}}$ thoả mãn $ \displaystyle {{a}_{1}}+{{a}_{2}}+..+{{a}_{n}}=\frac{n}{2}$.
Chứng minh rằng: $ \displaystyle {{a}_{1}}^{2}+{{a}_{2}}^{2}+..+{{a}_{n}}^{2}\ge \frac{n}{4}$
* Gợi ý : áp dụng cách giải như bài 2 phần một số BĐT thường gặp
Bài viết liên quan
- Cách giải bài toán BĐT và tìm GTNN, GTLN trong đề thi vào 10 môn Toán
- Một số ví dụ chứng minh BĐT bằng phương pháp ghép cặp
- Một số ví dụ chứng minh BĐT bằng phương pháp Cauchy ngược dấu
- Một số ví dụ chứng minh BĐT bằng phương pháp hệ số bất định UCT
- Một số ví dụ chứng minh BĐT bằng phương pháp cân bằng hệ số