Một số phương pháp giải hệ phương trình bậc cao

Trong các đề thi Toán vào lớp chuyên, chọn, THPT chuyên hoặc các đề thi học sinh giỏi Toán 9 thi thoảng vẫn xuất hiện các hệ phương trình bậc cao.

Và dưới đây là các phương pháp giải hệ PT bậc cao mà Toán cấp 2 muốn chia sẻ với các em.

A. PHƯƠNG PHÁP ĐƯA VỀ HẰNG ĐẲNG THỨC

     Điểm mấu chốt khi giải hệ bằng phương pháp biến đổi theo các hằng đẳng thức:

     Ta xét các ví dụ sau:

Ví dụ 1: Giải các hệ phương trình sau

a) $ \left\{ \begin{array}{l}\left( 3-x \right)\sqrt{2-x}-2y\sqrt{2y-1}=0\\\sqrt[3]{x+2}+2\sqrt{y+2}=5\end{array} \right.$              b) $ \left\{ \begin{array}{l}2{{x}^{2}}y+{{y}^{3}}=2{{x}^{4}}+{{x}^{6}}\\\left( x+2 \right)\sqrt{y+1}={{\left( x+1 \right)}^{2}}\end{array} \right.$

Giải

a) Điều kiện: $ x\le 2,y\ge \frac{1}{2}$. Phương trình (1) tương đương:

$ \left( 2-x \right)\sqrt{2-x}+\sqrt{2-x}=\left( 2y-1 \right)\sqrt{2y-1}+\sqrt{2y-1}$

Đặt $ a=\sqrt{2-x},b=\sqrt{2y-1}$. Ta có phương trình: $ \displaystyle {{a}^{3}}+a={{b}^{3}}+b$ ⇔ $ \displaystyle \left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}}+1 \right)=0$ . Do $ {{a}^{2}}+ab+{{b}^{2}}+1={{\left( a+\frac{b}{2} \right)}^{2}}+\frac{3{{b}^{2}}}{4}+1>0$ suy ra phương trình cho ta $ \displaystyle a=b$

$ \sqrt{2y-1}=\sqrt{2-x}\Leftrightarrow x=3-2y$ thay vào ta có: $ \sqrt[3]{5-2y}+2\sqrt{y+2}=5\Leftrightarrow $ Đặt $ a=\sqrt[3]{5-2y};b=\sqrt{y+2}$ ta có hệ phương trình sau:

$ \left\{ \begin{array}{l}a+2b=5\\{{a}^{3}}+2{{b}^{2}}=9\end{array} \right.\Leftrightarrow \left[ \begin{array}{l}a=1;b=2\\a=\frac{-3-\sqrt{65}}{4};b=\frac{23+\sqrt{65}}{8}\\a=\frac{\sqrt{65}-3}{4};b=\frac{23-\sqrt{65}}{8}\end{array} \right.$.

$ \Leftrightarrow \left[ \begin{array}{l}y=2\\y=\frac{233+23\sqrt{65}}{32}\\y=\frac{233-23\sqrt{65}}{32}\end{array} \right.$

Vậy hệ có nghiệm

$ \left( x;y \right)=\left( -1;2 \right),\left( \frac{23\sqrt{65}-185}{16};\frac{233-23\sqrt{65}}{32} \right),\left( -\frac{23\sqrt{65}+185}{16};\frac{233+23\sqrt{65}}{32} \right)$

b) Điều kiện: $ y\ge -1$.

Ta viết lại phương trình (1) thành: $ {{y}^{3}}-{{x}^{6}}+2{{x}^{2}}\left( y-{{x}^{2}} \right)=0$

$ \Leftrightarrow \left( y-{{x}^{2}} \right)\left( {{y}^{2}}+y{{x}^{2}}+{{x}^{4}}+2{{x}^{2}} \right)=0\Leftrightarrow \left[ \begin{array}{l}y={{x}^{2}}\\x=y=0\end{array} \right.$

Dễ thấy $ x=y=0$ không phải là nghiệm. Khi $ y={{x}^{2}}$ thay vào (2) ta được:

$ \left( x+2 \right)\sqrt{{{x}^{2}}+1}={{\left( x+1 \right)}^{2}}\Rightarrow {{\left( x+2 \right)}^{2}}\left( {{x}^{2}}+1 \right)={{\left( x+1 \right)}^{4}}\Leftrightarrow \left[ \begin{array}{l}x=\sqrt{3},y=3\\x=-\sqrt{3},y=3\end{array} \right.$

(thỏa mãn). Vậy hệ có nghiệm $ \left( x;y \right)=\left( \pm \sqrt{3};3 \right)$.

Ví dụ 2: Giải các hệ phương trình sau

a) $ \left\{ \begin{array}{l}{{x}^{5}}+x{{y}^{4}}={{y}^{10}}+{{y}^{6}}\\\sqrt{4x+5}+\sqrt{{{y}^{2}}+8}=6\end{array} \right.$

b) $ \left\{ \begin{array}{l}2{{x}^{3}}-4{{x}^{2}}+3x-1=2{{x}^{3}}\left( 2-y \right)\sqrt{3-2y}\\\sqrt{x+2}=\sqrt[3]{14-x\sqrt{3-2y}}+1\end{array} \right.$

Giải

a) Điều kiện: $ x\ge -\frac{5}{4}$.

Ta thấy $ y=0$ không là nghiệm của hệ. chia hai vế của (1) cho $ {{y}^{5}}$ ta được:

$ {{\left( \frac{x}{y} \right)}^{5}}+\frac{x}{y}={{y}^{5}}+y$  . Đặt $ a=\frac{x}{y}$ ta có phương trình: $ {{a}^{5}}+a={{y}^{5}}+y$ suy ra $ \left( a-y \right)\left( {{a}^{4}}+{{a}^{3}}y+{{a}^{2}}{{y}^{2}}+a{{y}^{3}}+1 \right)=0\Leftrightarrow y=a\Leftrightarrow x={{y}^{2}}$

$ \sqrt{4x+5}+\sqrt{x+8}=6\Leftrightarrow x=1\Rightarrow y=\pm 1$. Từ đó tính được $ y=\pm 1$

Vậy hệ đã cho có nghiệm $ \left( x;y \right)=\left( 1;\pm 1 \right)$.

b) Điều kiện: $ x\ge -2;y\le \frac{3}{2}$.Ta thấy khi thì hệ không có nghiệm.

Chia phương trình (1) cho $ {{x}^{2}}\ne 0$:

$ \left( 1 \right)\Leftrightarrow 2-\frac{4}{x}+\frac{3}{{{x}^{2}}}-\frac{1}{{{x}^{3}}}=\left( 4-2y \right)\sqrt{3-2y}$

$ \Leftrightarrow {{\left( 1-\frac{1}{x} \right)}^{3}}+\left( 1-\frac{1}{x} \right)={{\left( \sqrt{3-2y} \right)}^{3}}+\sqrt{3-2y}$

Đặt $ \displaystyle a=1-\frac{1}{x},b=\sqrt{3-2y}$ . Ta có $ {{a}^{3}}+a={{b}^{3}}+b$ ⇒ $ a=b$ ⇔ $ \sqrt{3-2y}=1-\frac{1}{x}$.

Thay vào (2) ta được: $ x+2-\sqrt[3]{15-x}=1\Leftrightarrow x+1=\sqrt[3]{15-x}\Leftrightarrow {{x}^{3}}+3{{x}^{2}}+4x-14=0$.

⇔ $ x=7\Rightarrow y=\frac{111}{98}$. Vậy hệ có nghiệm $ \left( x;y \right)=\left( 7;\frac{111}{98} \right)$.

B. KHI TRONG HỆ CÓ CHỨA PHƯƠNG TRÌNH BẬC 2 THEO ẨN x, HOẶC y

Khi trong hệ phương trình có chứa phương trình bậc hai theo ẩn $ x$ hoặc $ y$ ta có thể nghĩ đến các hướng xử lý như sau:

*  Nếu $ \Delta $ chẵn, ta giải $ x$ theo $ y$ rồi thế vào phương trình còn lại của hệ để giải tiếp

*  Nếu $ \Delta $ không chẵn ta thường xử lý theo cách:

+ Cộng hoặc trừ các phương trình của hệ để tạo được phương trình bậc hai có  chẵn hoặc tạo thành các hằng đẳng thức

+ Dùng điều kiện $ \Delta \ge 0$ để tìm miền giá trị của biến $ x,y$. Sau đó đánh giá phương trình còn lại trên miền giá trị $ \displaystyle x,y$ vừa tìm được:

Ta xét ví dụ sau:

Ví dụ: Giải các hệ phương trình sau

a) $ \left\{ \begin{array}{l}xy+x+y={{x}^{2}}-2{{y}^{2}}\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{array} \right.$

b)  $ \left\{ \begin{array}{l}2{{x}^{2}}+{{y}^{2}}-3xy+3x-2y+1=0\\4{{x}^{2}}-{{y}^{2}}+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{array} \right.$

Giải

Xét phương trình (1) của hệ ta có:

$ xy+x+y={{x}^{2}}-2{{y}^{2}}\Leftrightarrow {{x}^{2}}-x(y+1)-2{{y}^{2}}-y=0$. Ta coi đây là phương trình bậc 2 của $ x$ thì ta có: $ \Delta ={{(y+1)}^{2}}+8{{y}^{2}}+4y={{(3y+1)}^{2}}$. Từ đó suy ra

$ \left[ \begin{array}{l}x=\frac{y+1-(3y+1)}{2}=-y\\x=\frac{y+1+(3y+1)}{2}=2y+1\end{array} \right.$

Trường hợp 1: $ x=-y$. Từ phương trình  của hệ ta có điều kiện: $ \left\{ \begin{array}{l}x\ge 1\\y\ge 0\end{array} \right.$ suy ra phương trình vô nghiệm

Trường hợp 2: $ x=2y+1$ thay vào phương trình thứ hai ta có:

$ \begin{array}{l}(2y+1)\sqrt{2y}-y\sqrt{2y}=2y+2\Leftrightarrow y\sqrt{2y}+\sqrt{2y}=2(y+1)\\\Leftrightarrow (y+1)\left( \sqrt{2y}-2 \right)=0\Leftrightarrow y=2\Rightarrow x=5\end{array}$

Vậy hệ có một cặp nghiệm: $ (x;y)=(5;2)$

b) Xét phương trình (1) của hệ ta có:

$ 2{{x}^{2}}+{{y}^{2}}-3xy+3x-2y+1=0\Leftrightarrow 2{{x}^{2}}+x(3-3y)+{{y}^{2}}-2y+1=0$

Coi đây là phương trình bậc 2 của $ x$ ta có:

$ \Delta ={{(3-3y)}^{2}}-8\left( {{y}^{2}}-2y+1 \right)={{y}^{2}}-2y+1={{(y-1)}^{2}}$

Suy ra $ \left[ \begin{array}{l}x=\frac{3y-3-(y-1)}{4}=\frac{y-1}{2}\\x=\frac{3y-3+(y-1)}{4}=y-1\end{array} \right.$

Trường hợp 1:  $ y=x+1$ thay vào phương trình (2) ta thu được:

$ \begin{array}{l}3{{x}^{2}}-x+3=\sqrt{3x+1}+\sqrt{5x+4}\\\Leftrightarrow 3{{x}^{2}}-3x+(x+1-\sqrt{3x+1})+(x+2-\sqrt{5x+4})=0\end{array}$

⇔ $ \left( {{x}^{2}}-x \right)\left[ 3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}} \right]=0$

Do $ x\ge -\frac{1}{3}$ nên $ 3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}}>0$

⇒ $ {{x}^{2}}-x=0\Leftrightarrow \left[ \begin{array}{l}x=0\\x=1\end{array} \right.$

Trường hợp 2: $ y=2x+1$ thay vào phương trình (2) ta thu được:

$ 3-3x=\sqrt{4x+1}+\sqrt{5x+4}\Leftrightarrow \sqrt{4x+1}+\sqrt{5x+4}+3x-3=0$

Giải tương tự như trên ta được $ x=0$.

Kết luận: Hệ phương trình có 2 cặp nghiệm: $ (x;y)=(0;1),(1;2)$

C. PHƯƠNG PHÁP ĐÁNH GIÁ

Để giải được hệ phương trình bằng phương pháp đánh giá ta cần nắm chắc các bất đẳng thức cơ bản như: Cauchy, Bunhicopxki, các phép biến đổi trung gian giữa các bất đẳng thức, qua đó để đánh giá tìm ra quan hệ $ x,y$.

Ngoài ra ta cũng có thể dùng hàm số để  tìm GTLN, GTNN  từ đó có hướng đánh giá, so sánh phù hợp.

Ví dụ: Giải các hệ phương trình sau

a) $ \left\{ \begin{array}{l}\frac{1}{\sqrt{1+2{{x}^{2}}}}+\frac{1}{\sqrt{1+2{{y}^{2}}}}=\frac{2}{\sqrt{1+2xy}}\\\sqrt{x\left( 1-2x \right)}+\sqrt{y\left( 1-2y \right)}=\frac{2}{9}\end{array} \right.$

b) $ \left\{ \begin{array}{l}x\left( {{x}^{2}}-{{y}^{2}} \right)+{{x}^{2}}=2\sqrt{{{\left( x-{{y}^{2}} \right)}^{3}}}\\76{{x}^{2}}-20{{y}^{2}}+2=\sqrt[3]{4x\left( 8x+1 \right)}\end{array} \right.$

Giải

a) Điều kiện: $ 0\le x,y\le \frac{1}{2}$.

Đặt $ a=\sqrt{2}x,b=\sqrt{2}y;a,b\in \left[ 0;\frac{1}{\sqrt{2}} \right]$.

Ta có: $ VT=\frac{1}{\sqrt{1+{{a}^{2}}}}+\frac{1}{\sqrt{1+{{b}^{2}}}}\le \sqrt{2\left( \frac{1}{1+{{a}^{2}}}+\frac{1}{1+{{b}^{2}}} \right)}$.

Ta sử dụng bổ đề với $ a,b>0$ và $ ab\le 1$ ta có bất đẳng thức:

$ \frac{1}{1+{{a}^{2}}}+\frac{1}{1+{{b}^{2}}}\le \frac{2}{1+ab}\Leftrightarrow \frac{{{\left( a-b \right)}^{2}}\left( ab-1 \right)}{\left( 1+ab \right)\left( 1+{{a}^{2}} \right)\left( 1+{{b}^{2}} \right)}\le 0$ (đúng).

Vậy $ VT\le \frac{2}{\sqrt{1+ab}}=VP$.

Đẳng thức xảy ra khi $ x=y$. Thay vào(2) ta tìm được nghiệm của phương trình.

Nghiệm của hệ $ \left( x;y \right)=\left( \frac{9-\sqrt{73}}{36};\frac{9-\sqrt{73}}{36} \right),\left( \frac{9+\sqrt{73}}{36};\frac{9+\sqrt{73}}{36} \right)$.

b) Điều kiện: $ x\ge {{y}^{2}}\ge 0$.

Phương trình (1) tương đương: $ {{x}^{3}}+x\left( x-{{y}^{2}} \right)-2\sqrt{{{\left( x-{{y}^{2}} \right)}^{3}}}=0$.

Đặt $ \sqrt{x-{{y}^{2}}}=u$ phương trình (1) thành:

$ \displaystyle {{x}^{3}}+x{{u}^{2}}-2{{u}^{3}}=0\Leftrightarrow x=u\Leftrightarrow {{y}^{2}}=x-{{x}^{2}}$

Thay vào (2) ta được: $ 96{{x}^{2}}-20x+2=\sqrt[3]{32{{x}^{2}}+4x}$.

Ta có $ 96{{x}^{2}}-20x+2=\sqrt[3]{32{{x}^{2}}+4x}=\sqrt[3]{1.1.\left( 32{{x}^{2}}+4x \right)}\le \frac{32{{x}^{2}}+4x+2}{3}$

$ \Leftrightarrow 3\left( 96{{x}^{2}}-20x+2 \right)\le 32{{x}^{2}}+4x+2\Leftrightarrow {{\left( 16x-2 \right)}^{2}}\le 0\Leftrightarrow x=\frac{1}{8}\Rightarrow y=\pm \frac{\sqrt{7}}{8}$

Từ đó ta có các nghiệm của hệ là: Vậy hệ có nghiệm $ \left( x;y \right)=\left( \frac{1}{8};\pm \frac{\sqrt{7}}{8} \right)$.

D. BÀI TẬP TỰ GIẢI

Câu 1: Giải hệ phương trình $ \left\{ \begin{array}{l}2{{x}^{2}}-{{y}^{2}}+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\{{x}^{2}}-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{array} \right.$

Câu 2: Giải hệ phương trình $ \left\{ \begin{array}{l}\left| xy-2 \right|=4-{{y}^{2}}(1)\\{{x}^{2}}-xy+1=0(2)\end{array} \right.$

Câu 3: Giải hệ phương trình $ \displaystyle \left\{ \begin{array}{l}8x-y=6\\{{x}^{2}}-y=-6\end{array} \right.$

Câu 4: Giải hệ phương trình: $ \displaystyle \left\{ \begin{array}{l}\frac{3}{2x}-y=6\\\frac{1}{x}+2y=-4\end{array} \right.$

Câu 5: Tìm $ \displaystyle x;y$ thỏa mãn : $ \displaystyle \left\{ \begin{array}{l}(x+\sqrt{2015+{{x}^{2}}})(y+\sqrt{2015+{{y}^{2}}})=2015\\3{{x}^{2}}+8{{y}^{2}}-12xy=23\end{array} \right.$

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *