- Nhắc lại định nghĩa, tính chất cơ bản của bất đẳng thức
- Phương pháp chứng minh bất đẳng thức bằng định nghĩa
- Chứng minh bất đẳng thức bằng phương pháp biến đổi tương đương
- Áp dụng bất đẳng thức để chứng minh bất đẳng thức
- Chứng minh bất đẳng thức bằng phương pháp phản chứng
- Chứng minh bất đẳng thức bằng phương pháp làm trội, làm giảm
- Một số loại bài chứng minh bất đẳng thức thường gặp
- Mở rộng một số bất đẳng thức
- Ứng dụng của bất đẳng thức trong Toán THCS
- Một số bài tập bất đẳng thức
- Phương pháp đổi biến chứng minh bất đẳng thức
- Một số ví dụ chứng minh BĐT bằng phương pháp cân bằng hệ số
- Kỹ thuật chọn điểm rơi chứng minh bất đẳng thức
- Một số ví dụ chứng minh BĐT bằng phương pháp hệ số bất định UCT
- Một số ví dụ chứng minh BĐT bằng phương pháp Cauchy ngược dấu
Bằng phương pháp làm trội, làm giảm chúng ta có thể chứng minh được một số dạng bài tập bất đẳng thức. Các em xem ví dụ dưới đây để rõ về phương pháp này.
Cho a, b, c là 3 số dương. Chứng minh rằng: $ \displaystyle 1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2$
Giải
Ta có : $ \displaystyle \frac{a}{a+b+c}<\frac{a}{a+b}$ ; $ \displaystyle \frac{b}{a+b+c}<\frac{b}{b+c}$ ; $ \displaystyle \frac{c}{a+b+c}<\frac{c}{c+a}$
Suy ra: $ \displaystyle \frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}$
⇔ $ \displaystyle 1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}$
Ta lại có: $ \displaystyle \frac{a}{a+b}<\frac{a+c}{a+b+c}$ (điều này dễ chứng minh được)
Tương tự:
$ \displaystyle \frac{b}{b+c}<\frac{a+b}{a+b+c}$ ;
$ \displaystyle \frac{c}{c+a}<\frac{c+b}{a+b+c}$
Suy ra: $ \displaystyle \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{2\left( a+b+c \right)}{a+b+c}$ = 2
⇔ $ \displaystyle \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2$
Vậy: $ \displaystyle 1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2$
Ví dụ 2: Chứng minh rằng: Với mọi số tự nhiên n lớn hơn 1 thì:
$ \displaystyle \frac{1}{{{2}^{2}}}+\frac{1}{{{3}^{2}}}+…+\frac{1}{{{n}^{2}}}<1$
Giải
Ta có : $ \displaystyle \frac{1}{{{k}^{2}}}=\frac{1}{k.k}<\frac{1}{k\left( k-1 \right)}=\frac{1}{k-1}-\frac{1}{k}$
Nên:
$ \displaystyle \frac{1}{{{2}^{2}}}<\frac{1}{1}-\frac{1}{2}$ ;
$ \displaystyle \frac{1}{{{3}^{2}}}<\frac{1}{2}-\frac{1}{3}$
……..
$ \displaystyle \frac{1}{{{n}^{2}}}<\frac{1}{n-1}-\frac{1}{n}$
Suy ra: $ \displaystyle \frac{1}{{{2}^{2}}}+\frac{1}{{{3}^{2}}}+…+\frac{1}{{{n}^{2}}}<1-\frac{1}{n}$ <1
Vậy: $ \displaystyle \frac{1}{{{2}^{2}}}+\frac{1}{{{3}^{2}}}+…+\frac{1}{{{n}^{2}}}<1$
Bài viết liên quan
- Cách giải bài toán BĐT và tìm GTNN, GTLN trong đề thi vào 10 môn Toán
- Một số ví dụ chứng minh BĐT bằng phương pháp ghép cặp
- Một số ví dụ chứng minh BĐT bằng phương pháp Cauchy ngược dấu
- Một số ví dụ chứng minh BĐT bằng phương pháp hệ số bất định UCT
- Một số ví dụ chứng minh BĐT bằng phương pháp cân bằng hệ số