Đề thi HSG môn Toán lớp 9 tỉnh An Giang năm học 2012-2013

Đề thi học sinh giỏi môn Toán lớp 9 Sở giáo dục và đào tạo tỉnh An Giang năm học 2012-2013. Thời gian làm bài 150 phút (không kể thời gian phát đề).

Bài 1 : (4,0 điểm)

a. Khử căn ở mẫu số

A=\frac{59}{\sqrt{3}+\sqrt{5}+\sqrt{7}}

b. Tính tổng

S=\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\cdot \cdot \cdot +\frac{1}{\sqrt{2011}+\sqrt{2013}}

Bài 2 : (4,0 điểm)

Cho đa thức: Q\left( x \right)={{x}^{4}}+3{{x}^{2}}+1

a. Phân tích đa thức Q\left( x \right) thành nhân tử.

b. Tìm nghiệm nguyên của phương trình y2 =  x4 + 3x2 +1

Bài 3 : (4,0 điểm)

a. Vẽ đồ thị hàm số: y=f\left( x \right)=\left| 3x-9 \right|+x-7

b Giải phương trình: 3\sqrt{{{x}^{2}}-6\sqrt{{{x}^{2}}}+9}+\sqrt{{{x}^{2}}}-7=0

Bài 4 : (4,0 điểm)

Cho hệ phương trình:

\left\{ \begin{array}{l}x+2y=-1\\3x+my=1\end{array} \right. (m là tham số)

a. Tìm m để hệ phương trình có nghiệm, tìm nghiệm đó.

b. Xác định giá trị nhỏ nhất của : P={{\left( x+2y+1 \right)}^{2}}+{{\left( 3x+my-1 \right)}^{2}}

Bài 5 : (4,0 điểm)

Cho hình thang cân ABCD cạnh bên là AD và BC ngoại tiếp đường tròn tâm I bán kính R = 2

a. Chứng minh rằng hai tam giác IAD và IBC vuông

b. Cho AB = 2x (0 < x < 2). Tính diện tích hình thang ABCD theo x.

Fanpage Toán cấp 2:

Nhóm Giải toán cấp 2

 

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Toán cấp 2 © 2012 Toán cấp 2