ĐỀ SỐ 6
Câu 1: Tính giá trị biểu thức:
A =
Câu 2:
a) Cho các số khác không a, b, c. Tính giá trị của biểu thức:
M = x2011 + y2011 + z2011
Biết x, y, z thoả mãn điều kiện:
b) Chứng minh rằng với a >
x =
Câu 3:
a) Cho a, b, c > 0 thoả mãn:
Tìm giá trị nhỏ nhất của A = a.b.c
b) Giả sử a, b, c, d, A, B, C, D là những số dương và:
Chứng minh rằng:
Câu 4: Cho tam giác ABC có ba góc nhọn. Gọi M, N, P, Q là bốn đỉnh của một hình chữ nhật (M và N nằm trên cạnh BC, P nằm trên cạnh AC và Q nằm trên cạnh AB).
a) Chứng minh rằng: Diện tích hình chữ nhật MNPQ có giá trị lớn nhất khi PQ đi qua trung điểm của đường cao AH.
b) Giả sử AH = BC. Chứng minh rằng, mọi hình chữ nhật MNPQ đều có chu vi bằng nhau.
Câu 5: Cho tam giác ABC vuông cân ở A, đường trung tuyến BM. Gọi D là hình chiếu của C trên tia BM, H là hình chiếu của D trên AC. Chứng minh rằng AH = 3HD.