Đề thi HSG môn Toán 9 quận Đống Đa 2018-2019

Đề thi học sinh giỏi môn Toán lớp 9, phòng giáo dục và đào tạo quận Đống Đa, năm học 2018-2019. Ngày thi 3/11/2018. Thời gian: 120 phút.

Câu 1: (4 điểm)

Cho biểu thức: P=(a+1ab+1+ab+a1ab+1):(1+ab+a1aba+1ab+1)

1. Rút gọn P

2. Cho 1a+1b=6. Tìm GTLN của P.

Câu 2: (5 điểm)

1. Giải phương trình 2(x2+2x+3)=5x3+3x2+3x+2 với x là ẩn số

2. Tìm tất cả các cặp số nguyên thỏa mãn điều kiện: 2xy2+x+y+1=x2+2y2+xy

Câu 3: (4 điểm)

1. Với các số thực a, b > 0 và thỏa mãn điều kiện 2a + b ≤ 3, chứng minh:

2a+3+1b+332

2. Hãy cho biết kết quả của phép tính 2100 có bao nhiêu chữ số? Vì sao?

Câu 4: (6 điểm)

Cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Gọi D là điểm thuộc tia HC sao cho HD = HA. Đường vuông góc BC tại D cắt AC tại E.

1. Chứng minh tam giác AEB vuông cân

2. Gọi M là trung điểm của BE. Tính số đo góc AHM.

3. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt BI tại K. Chứng minh KA = KC.

Câu 5: (1 điểm)

Chia các số 1, 2, 3, 4,…,199, 200 thành 50 nhóm. Chứng minh có ít nhất một nhóm có 3 số là số đo ba cạnh của một tam giác.

1 Comment

Add a Comment
  1. Có đáp án chưa a

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *