Đề kiểm tra 45 phút Hình học 9 tiết 19 THCS Tân Định 2013-2014

Đề kiểm tra 1 tiết môn Hình học 9 tiết 19 trường THCS Tân Định năm học 2013-2014. Thời gian làm bài 45 phút.

A. TRẮC NGHIỆM (1 điểm)

Hướng dẫn: Nếu chọn câu 1 đáp án A đúng thì ghi vào giấy kiểm tra là: Câu 1: A

Câu 1: Tỉ số lượng giác của: \sin {{25}^{0}}\,\,,\,\,\,\sin {{79}^{0}}\,,\,\,\,\sin {{55}^{0}}\,,\,\,cos{{71}^{0}}\,,\,\,cos{{36}^{0}} theo thứ tự từ lớn đến nhỏ là:

A. \sin {{25}^{0}},\,\,\cos {{36}^{0}},\,\,\sin {{55}^{0}},\,\,\cos {{71}^{0}},\,\,\sin {{79}^{0}}

B. \sin {{79}^{0}},\,\,\sin {{55}^{0}},\,\,\cos {{36}^{0}},\,\,\sin {{25}^{0}},\,\,\cos {{71}^{0}}

C. \cos {{71}^{0}},\,\,\sin {{25}^{0}},\,\,\cos {{36}^{0}},\,\,\sin {{55}^{0}},\,\,sin{{79}^{0}}

D. \cos {{71}^{0}},\,\,\sin {{25}^{0}},\,\,\cos {{36}^{0}},\,\,\sin {{55}^{0}},\,\,\sin {{79}^{0}}

Câu 2: Cho {{0}^{0}}<\alpha <{{90}^{0}}. Trong các đẳng thức sau, đẳng thức nào sai?

A. {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1

B. \tan \alpha =\cot \left( {{{{90}}^{0}}-\alpha } \right)

C. \cot \alpha =\sin \left( {90-\alpha } \right)

D. \tan \alpha .\cot \alpha =1

Câu 3:

Đề kiểm tra 45 phút Hình học 9 tiết 19 THCS Tân Định 2013-2014

Cho tam giác ABC vuông tại A. Số đo góc C bằng {{30}^{0}}. Độ dài cạnh AB là \sqrt{3}. Độ dài BC bằng:

A. 30\sqrt{3}

B. 3\sqrt{2}

C. 2\sqrt{2}

D. 2\sqrt{3}

Câu 4:

Đề kiểm tra 45 phút Hình học 9 tiết 19 THCS Tân Định 2013-2014-1

Trong hình bên, cosB = …..

A. \frac{{AH}}{{AB}}

B. \sin \widehat{{HAC}}

C. \frac{{AH}}{{AC}}

D. \frac{{AC}}{{BC}}

B. TỰ LUẬN

Câu 1: (2 điểm) Không dùng máy tính bỏ tủi

a) So sánh \sin {{45}^{0}}\cos {{60}^{0}}

b) Tính giá trị của biểu thức:

A={{\sin }^{2}}{{32}^{0}}+{{\sin }^{2}}{{58}^{0}}+2\cot {{20}^{0}}.\cot {{70}^{0}}

Quy ước làm tròn trong các Câu 2, Câu 3, Câu 4

+) Số đo góc làm tròn đến độ

+) Số đo độ dài làm tròn đến chữ số thập phân thứ 2

Câu 2: (2 điểm) Giải \Delta ABC vuông tại A, biết BC = 8 cm và \widehat{C}={{35}^{0}}

Câu 3: (1,5 điểm) Cho tam giác ABC vuông tại A. Biết \sin B=\frac{1}{2}. Tính \cos B,\,\,\tan B,\,\,\cot C

Câu 4: (3 điểm) Cho tam giác ABC vuông tại A, AH là đường cao ứng với cạnh huyền của tam giác.

a) Cho AC = 3cm, BC = 5cm. Tính độ dài các đoạn thẳng AB, AH, BH, CH.

b) Đường thẳng qua C và song song với AB cắt AH tại D. Chứng minh \displaystyle AH.AD+BH.BC=B{{C}^{2}}

Câu 5: (0,5 điểm) Cho hình chữ nhật ABCD co AB = 2AD, một đường thẳng đi qua A cắt cạnh BC tại M, cắt đường thẳng CD tại N. Chứng minh \frac{4}{{A{{B}^{2}}}}=\frac{4}{{A{{M}^{2}}}}+\frac{1}{{A{{N}^{2}}}}

Toán cấp 2 © 2012 Toán cấp 2