- Ôn tập: Góc tạo bởi tiếp tuyến và dây cung
- Ôn tập: Định nghĩa và sự xác định đường tròn
- Ôn tập: Góc nội tiếp
- Ôn tập: Tính chất đối xứng của đường tròn
- Ôn tập: Đường tròn ngoại tiếp – nội tiếp và bàng tiếp tam giác, đa giác
- Ôn tập: Liên hệ giữa cung và dây
- Ôn tập: Tiếp tuyến của đường tròn
- Ôn tập: Góc ở tâm – số đo độ của cung – so sánh cung
- Ôn tập: Vị trí tương đối của hai đường tròn
- Ôn tập: Góc có đỉnh bên trong – bên ngoài đường tròn
- Ôn tập: Cung chứa góc
- Ôn tập: Tứ giác nội tiếp
- Ôn tập: Đa giác đều ngoại tiếp – nội tiếp đường tròn
- Ôn tập: Độ dài đường tròn – diện tích hình tròn
- Ôn tập: Phương pháp chứng minh ba điểm thẳng hàng
- Ôn tập: Phương pháp chứng minh hai đoạn thẳng bằng nhau
- Ôn tập: Phương pháp chứng minh hai đường thẳng vuông góc
- Ôn tập: Chứng minh hai đường thẳng song song
- Ôn tập: Chứng minh các đường thẳng đồng quy
- Ôn tập: Chứng minh hệ thức hình học
- Ôn tập: Tính góc
- Ôn tập: Chứng minh đường thẳng đi qua điểm cố định
- Ôn tập: Diện tích các hình trong không gian
Ở bài viết này Toancap2.net cùng các em đi ôn tập về các vấn đề liên quan tới chứng minh hệ thức hình học. Cụ thể dưới đây.
1. Tức là ta phải đi chứng minh một đẳng thức đúng từ các dữ kiện đề bài cho.
2. Ta thường dùng các công thức của tam giác vuông nếu trong bài xuất hiện góc vuông. (xem phần trước).
- Ôn tập cuối năm – Bồi dưỡng Đại số 9
- Giải phương trình bậc hai bằng đồ thị. Vị trí tương đối giữa parabol $y=ax^2$ và đường thẳng y=mx+n
- Giải bài toán bằng cách lập phương trình – Bồi dưỡng Đại số 9
- Phương trình quy về phương trình bậc hai – Bồi dưỡng Đại số 9
- Phương trình bậc hai một ẩn – Bồi dưỡng Đại số 9
3. Ta dùng phương pháp hai tam giác đồng dạng để chứng minh tỉ số bằng nhau và từ tỉ số này ta suy ra đẳng thức cần chứng minh.
4. Chú ý là có thể sử dụng tính chất bắc cầu trong nhiều tam giác đồng dạng.
5. Vận dụng công thức diện tích và phân tích một hình thành nhiều tam giác và cộng diện tích lại.
6. Sử dụng tam giác bằng nhau để chuyển cạnh khi cần thiết.
7. Dùng các tính chất của đường trung bình; hình bình hành; đoạn chắn bởi các đường thẳng //…
Bài tâp:
1. Cho (O) có đường kính AB. Qua A kẽ tiếp tuyến xy. Một điểm M ∈ Ax; nối BM cắt (O) tại C. C/m: MA2 = MB.MC.
2. Cho tam giác đều ABC nội tiếp (O). D là điểm trên cung BC. (cung nhỏ). CD và AB kéo dài cắt nhau ở M; BD và AC kéo dài cắt nhau ở N.
C/m:AB2 = BM.CN.
3. Cho ΔABC có AB<AC. Từ M ∈ AB vẽ MEF //BC cắt AC tại E và đường thẳng song song AB vẽ từ C tại F. AC cắt BF tại I. C/m: IC2 = IE.IA.
4. Cho hình chữ nhật ABCD có AB=36mm; AD=24mm. Từ D nối đến trung điểm M của AB cắt AC tại I và CB kéo dài tại K. C/m: ID2 =IM.IK.
5. Cho ΔABC vuông tại A. Vẽ phân giác trong AD của góc A (D ∈ BC). Gọi khoảng cách từ D đến AB là d. C/m: $ \displaystyle \frac{1}{d}=\frac{1}{b}+\frac{1}{c}$ (sdct S).
6. Cho (O; R) và hai dây cung song song nhau AD và BE ở về hai phía của dây AB và cùng hợp với AB một góc 450. Nối DE cắt AB tại M.
C/m: MA2 + MB2 + MD2 + ME2 = 4R2.