- Ôn tập: Góc tạo bởi tiếp tuyến và dây cung
- Ôn tập: Định nghĩa và sự xác định đường tròn
- Ôn tập: Góc nội tiếp
- Ôn tập: Tính chất đối xứng của đường tròn
- Ôn tập: Đường tròn ngoại tiếp – nội tiếp và bàng tiếp tam giác, đa giác
- Ôn tập: Liên hệ giữa cung và dây
- Ôn tập: Tiếp tuyến của đường tròn
- Ôn tập: Góc ở tâm – số đo độ của cung – so sánh cung
- Ôn tập: Vị trí tương đối của hai đường tròn
- Ôn tập: Góc có đỉnh bên trong – bên ngoài đường tròn
- Ôn tập: Cung chứa góc
- Ôn tập: Tứ giác nội tiếp
- Ôn tập: Đa giác đều ngoại tiếp – nội tiếp đường tròn
- Ôn tập: Độ dài đường tròn – diện tích hình tròn
- Ôn tập: Phương pháp chứng minh ba điểm thẳng hàng
- Ôn tập: Phương pháp chứng minh hai đoạn thẳng bằng nhau
- Ôn tập: Phương pháp chứng minh hai đường thẳng vuông góc
- Ôn tập: Chứng minh hai đường thẳng song song
- Ôn tập: Chứng minh các đường thẳng đồng quy
- Ôn tập: Chứng minh hệ thức hình học
- Ôn tập: Tính góc
- Ôn tập: Chứng minh đường thẳng đi qua điểm cố định
- Ôn tập: Diện tích các hình trong không gian
Để chứng minh hai đoạn thẳng bằng nhau trong mặt phẳng các em có thể áp dụng một trong các phương pháp mà Toán cấp 2 giới thiệu dưới đây.
1. Dùng hai tam giác bằng nhau.
2. Dùng tính chất của tam giác; hình thang cân; hình bình hành;…
- Ôn tập cuối năm – Bồi dưỡng Đại số 9
- Giải phương trình bậc hai bằng đồ thị. Vị trí tương đối giữa parabol $y=ax^2$ và đường thẳng y=mx+n
- Giải bài toán bằng cách lập phương trình – Bồi dưỡng Đại số 9
- Phương trình quy về phương trình bậc hai – Bồi dưỡng Đại số 9
- Phương trình bậc hai một ẩn – Bồi dưỡng Đại số 9
3. Sử dụng tính chất của đường chéo các hình. Tính chất đường trung bình.
4. Sử dụng tính chất bắc cầu
Bài tâp:
1. Cho hình vuông ABCD tâm O; qua O kẻ hai đường MON và EOF vuông góc nhau tại O với M; N ∈ AB và CD còn E;F ∈ AC và BC. C/m: MN=EF.
2. Cho tam giác ABC cân tại A. Một điểm M ∈ AB và trên tia đối tia CA lấy N: CN=BM. Nối MN cắt BC tại I. C/m: MI=IN.
3. Cho ΔABC có AB<AC. Qua trung điểm M của BC vẽ đường vuông gócvới phân giác trong góc A cắt AB tại I và AC tại K. C/m: BI=CK.
4. Cho nửa (O) có đường kính AB=2R. Lấy hai điểm C và D trên cung AB: cung AC; CD và BD bằng nhau. Kéo dài dây AC một đoạn: EC=AC và kéo dài AD một đoạn DI=AD. Nối BI. C/m: BI=AE.
5. Cho ΔABC có AB > AC và góc A gấp đôi góc B. Một điểm M ∈ AB và D trên tia đối AC: AM=AD. Nối DM kéo dài cắt BC tại N. C/m: MN=BN.
Cho ABC vuông tại A, đường phân giác BE. Kẻ EH BC ( H BC ).
Gọi K là giao điểm của AH và BE. Chứng minh rằng:
BE là đường trung trực của AH