- Ôn tập: Góc tạo bởi tiếp tuyến và dây cung
- Ôn tập: Định nghĩa và sự xác định đường tròn
- Ôn tập: Góc nội tiếp
- Ôn tập: Tính chất đối xứng của đường tròn
- Ôn tập: Đường tròn ngoại tiếp – nội tiếp và bàng tiếp tam giác, đa giác
- Ôn tập: Liên hệ giữa cung và dây
- Ôn tập: Tiếp tuyến của đường tròn
- Ôn tập: Góc ở tâm – số đo độ của cung – so sánh cung
- Ôn tập: Vị trí tương đối của hai đường tròn
- Ôn tập: Góc có đỉnh bên trong – bên ngoài đường tròn
- Ôn tập: Cung chứa góc
- Ôn tập: Tứ giác nội tiếp
- Ôn tập: Đa giác đều ngoại tiếp – nội tiếp đường tròn
- Ôn tập: Độ dài đường tròn – diện tích hình tròn
- Ôn tập: Phương pháp chứng minh ba điểm thẳng hàng
- Ôn tập: Phương pháp chứng minh hai đoạn thẳng bằng nhau
- Ôn tập: Phương pháp chứng minh hai đường thẳng vuông góc
- Ôn tập: Chứng minh hai đường thẳng song song
- Ôn tập: Chứng minh các đường thẳng đồng quy
- Ôn tập: Chứng minh hệ thức hình học
- Ôn tập: Tính góc
- Ôn tập: Chứng minh đường thẳng đi qua điểm cố định
- Ôn tập: Diện tích các hình trong không gian
1. Tứ giác nội tiếp là tứ giác có 4 đỉnh nằm trên một đường tròn.
2. Tứ giác ABCD nội tiếp đồng nghĩa 4 điểm A; B; C và D cùng nằm trên 1 đường tròn.
3. Tứ giác nội tiếp đường tròn thì đường tròn gọi là ngoại tiếp tứ giác đó.
4. Tâm của đường tròn ngoại tiếp tứ giác là giao điểm ba đường trung trực của ba cạnh tứ giác đó.
5. Cho tứ giác ABCD nội tiếp (O; R) khi đó OA= OB= OC = OD =R.
6. Chú ý: O có thể nằm ngoài tứ giác; cũng có thể nằm trong hoặc nằm trên một cạnh chứ không phải lúc nào cũng nằm trong.
7. Cho ABCD là tứ giác nội tiếp thì A+C= B+D = 1800.
8. Ngược lại tứ giác ABCD có A+C =1800 hoặc B+D=1800 thì ABCD nội tiếp.
9. Để c/m tứ giác ABCD nội tiếp ta có các cách sau:
a. Chỉ ra A+C =1800.
b. Chỉ ra B+D=1800.
c. Chỉ ra bốn điểm A; B;C và D cùng thuộc một đường tròn nào đó cụ thể.
d. Chỉ ra các góc nội tiếp tại A và B cùng nhìn CD 1 góc bằng nhau.
Bài tập:
1. Cho ΔABC có AB>AC. Vẽ ba đường cao AH; BK và CF; I là trực tâm ΔABC. Nêu tên các tứ giác nội tiếp đường tròn khi nối HK; KF và FH.
2. cho góc nhọn xOy. Trên cạnh Ox lấy A và B: OA=2cm; OB=6cm. trên Oy lấy hai điểm C và D: OC=3cm; OD=4cm. nối BD và AC. c/m: ABCD nội tiếp.
3. Cho (O) và A ∈ (O). Từ M trên tiếp tuyến tại A vẽ cát tuyên MBC. Gọi I là trung điểm BC. C/m: AMIO nội tiếp.