- Ôn tập: Góc tạo bởi tiếp tuyến và dây cung
- Ôn tập: Định nghĩa và sự xác định đường tròn
- Ôn tập: Góc nội tiếp
- Ôn tập: Tính chất đối xứng của đường tròn
- Ôn tập: Đường tròn ngoại tiếp – nội tiếp và bàng tiếp tam giác, đa giác
- Ôn tập: Liên hệ giữa cung và dây
- Ôn tập: Tiếp tuyến của đường tròn
- Ôn tập: Góc ở tâm – số đo độ của cung – so sánh cung
- Ôn tập: Vị trí tương đối của hai đường tròn
- Ôn tập: Góc có đỉnh bên trong – bên ngoài đường tròn
- Ôn tập: Cung chứa góc
- Ôn tập: Tứ giác nội tiếp
- Ôn tập: Đa giác đều ngoại tiếp – nội tiếp đường tròn
- Ôn tập: Độ dài đường tròn – diện tích hình tròn
- Ôn tập: Phương pháp chứng minh ba điểm thẳng hàng
- Ôn tập: Phương pháp chứng minh hai đoạn thẳng bằng nhau
- Ôn tập: Phương pháp chứng minh hai đường thẳng vuông góc
- Ôn tập: Chứng minh hai đường thẳng song song
- Ôn tập: Chứng minh các đường thẳng đồng quy
- Ôn tập: Chứng minh hệ thức hình học
- Ôn tập: Tính góc
- Ôn tập: Chứng minh đường thẳng đi qua điểm cố định
- Ôn tập: Diện tích các hình trong không gian
1. Cho (O) cung AB là đường cong chạy từ A đến B theo đường tròn. Còn dây (dây cung) là đoạn thẳng AB.
2. Ta chú ý với hai điểm A và B trên (O) luôn tạo ra hai cung lớn và cung nhỏ. Sau đây ta chỉ xét cung nhỏ.
3. Hai dây cung bằng nhau <=> hai cung bằng nhau.
4. Dây lớn hơn <=> cung lớn hơn.
Bài tập:
1. Cho (O) đường kính AB. Từ A và B vẽ hai dây cung AC và BD song song nhau. Qua O vẽ đường vuông góc AC tại M và BD tại N. So sánh hai cung AC và BD.
2. Cho (O) và dây cung AB chia đường tròn thành hai cung thỏa: $ \displaystyle AmB=\frac{1}{3}AnB$
a. Tính số đo mỗi cung theo độ.
b. C/m: khoảng cách từ tâm O đến dây AB là AB/2.
3. Trên đường tròn (O) vẽ hai cung AB và CD thỏa: AB = 2CD . C/m: AB < 2CD.