- Ôn tập: Góc tạo bởi tiếp tuyến và dây cung
- Ôn tập: Định nghĩa và sự xác định đường tròn
- Ôn tập: Góc nội tiếp
- Ôn tập: Tính chất đối xứng của đường tròn
- Ôn tập: Đường tròn ngoại tiếp – nội tiếp và bàng tiếp tam giác, đa giác
- Ôn tập: Liên hệ giữa cung và dây
- Ôn tập: Tiếp tuyến của đường tròn
- Ôn tập: Góc ở tâm – số đo độ của cung – so sánh cung
- Ôn tập: Vị trí tương đối của hai đường tròn
- Ôn tập: Góc có đỉnh bên trong – bên ngoài đường tròn
- Ôn tập: Cung chứa góc
- Ôn tập: Tứ giác nội tiếp
- Ôn tập: Đa giác đều ngoại tiếp – nội tiếp đường tròn
- Ôn tập: Độ dài đường tròn – diện tích hình tròn
- Ôn tập: Phương pháp chứng minh ba điểm thẳng hàng
- Ôn tập: Phương pháp chứng minh hai đoạn thẳng bằng nhau
- Ôn tập: Phương pháp chứng minh hai đường thẳng vuông góc
- Ôn tập: Chứng minh hai đường thẳng song song
- Ôn tập: Chứng minh các đường thẳng đồng quy
- Ôn tập: Chứng minh hệ thức hình học
- Ôn tập: Tính góc
- Ôn tập: Chứng minh đường thẳng đi qua điểm cố định
- Ôn tập: Diện tích các hình trong không gian
1. Góc nội tiếp của (O) là góc có đỉnh nằm trên đường tròn (O) và hai cạnh cắt (O) tại hai điểm phân biệt.
2. Để có góc nội tiếp thường ta có ba điểm nằm trên đương tròn.
3. Số đo góc nội tiếp chắn cung bằng ½ số đo góc ở tâm cùng chắn cung đó. Chú ý là cùng một cung.
4. Góc nội tiếp có số đo bằng ½ số đo cung bị chắn.
5. Cùng một cung có thể có nhiều góc nội tiếp thì các góc này đều bằng nhau.
6. Đặc biệt góc nội tiếp chắn nửa đường tròn thì là góc vuông 900.
7. Các cung bằng nhau thì góc nội tiếp chắn cung đó cũng bằng nhau và ngược lại.
8. Cung nào lớn hơn thì góc nội tiếp chắn cung đó cũng lớn hơn.
Bài tập:
1. Cho (O) có hai bán kính OA và OB vuông góc. Lấy C trên (O): $ \displaystyle \frac{sdAC}{sdBC}=\frac{4}{5}$
Tính các góc của tam giác ABC.
2. Cho tam giác ABC cân tại A và có góc A là 500. Nửa đường tròn đường kính AC cắt AB tại D và BC tại H. Tính số đo các cung AD; DH và HC.
3. Cho (O) có đường kính AB vuông góc dây cung CD tại E. C/m: CD2= 4AE.BE