- Bài tập tuần 1 – Phép nhân và phép chia đa thức – Đại số 8
- Bài tập tuần 2 – Những hằng đẳng thức đáng nhớ – Đại số 8
- Bài tập tuần 3 – Những hằng đẳng thức đáng nhớ (tiếp) – Đại số 8
- Bài tập tuần 4 – Những hằng đẳng thức đáng nhớ (tiếp) – Đại số 8
- Bài tập tuần 5 – Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và dùng hằng đẳng thức – Đại số 8
- Bài tập tuần 6 – Phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử và luyện tập – Đại số 8
- Bài tập tuần 7 – Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp – Đại số 8
- Bài tập tuần 8 – Chia đơn thức cho đơn thức chia đa thức cho đơn thức – Đại số 8
- Bài tập tuần 9 – Chia đa thức một biến đã sắp xếp – Đại số 8
- Bài tập tuần 10 – Ôn tập chương 1 – Đại số 8
Bài toán 1: Viết các biểu thức sau dưới dạng tích
a) $ \displaystyle {{x}^{3}}+8$
b) $ \displaystyle {{x}^{3}}-64$
c) $ \displaystyle 8{{x}^{3}}+1$
d) $ \displaystyle 27-{{x}^{3}}$
e) $ \displaystyle 125+8{{x}^{3}}$
f) $ \displaystyle {{x}^{9}}-27{{y}^{3}}$
Bài toán 2: Viết biểu thức sau dưới dạng tổng hoặc hiệu của các lập phương
a) $ \displaystyle \left( {x+2} \right)\left( {{{x}^{2}}-2x+4} \right)$
b) $ \displaystyle \left( {2-x} \right)\left( {{{x}^{2}}+2x+4} \right)$
c) $ \displaystyle \left( {x+3y} \right)\left( {9{{y}^{2}}-3xy+{{x}^{2}}} \right)$
d) $ \displaystyle \left( {4-\frac{x}{2}} \right)\left( {\frac{{{{x}^{2}}}}{4}+2x+16} \right)$
e) $ \displaystyle \left( {x+\frac{1}{3}} \right)\left( {{{x}^{2}}-\frac{x}{3}+\frac{1}{9}} \right)$
f) $ \displaystyle \left( {\frac{1}{4}-\frac{x}{5}} \right)\left( {\frac{{{{x}^{2}}}}{{25}}+\frac{x}{{20}}+\frac{1}{{16}}} \right)$
Bài toán 3: Rút gọn biểu thức
$ \displaystyle A=\left( {x-2} \right)\left( {{{x}^{2}}+2x+4} \right)-\left( {128+{{x}^{3}}} \right)$
$ \displaystyle B=\left( {2x+3y} \right)\left( {4{{x}^{2}}-6xy+9{{y}^{2}}} \right)-\left( {3x-2y} \right)\left( {9{{x}^{2}}+6xy+4{{y}^{2}}} \right)$
Bài toán 4: Tìm x
a) $ \displaystyle {{\left( {\frac{x}{2}-1} \right)}^{3}}+\left( {2-\frac{x}{2}} \right)\left( {4+x+\frac{{{{x}^{2}}}}{4}} \right)+\frac{3}{2}x\left( {\frac{{x+4}}{2}} \right)=16$
b) $ \displaystyle \left( {2x+2} \right)\left( {4{{x}^{2}}-4x+4} \right)-2x\left( {4{{x}^{2}}-2} \right)=15$
c) $ \displaystyle {{\left( {\frac{x}{3}-3} \right)}^{3}}-\left( {\frac{x}{3}-3} \right)\left( {\frac{{{{x}^{2}}}}{9}+x+9} \right)+9{{\left( {\frac{{x+3}}{3}} \right)}^{2}}=15$
d) $ \displaystyle 2x\left( {2x-5} \right)\left( {2x+5} \right)-\left( {2x+2} \right)\left( {4{{x}^{2}}-4x+4} \right)=3$
Bài toán 5: Tính giá trị biểu thức
$ \displaystyle M=\left( {7-2x} \right)\left( {4{{x}^{2}}+14x+49} \right)-\left( {64-8{{x}^{3}}} \right)$ tại $ \displaystyle x=1$
$ \displaystyle N={{x}^{3}}+{{y}^{3}}+6{{x}^{2}}{{y}^{2}}\left( {x+y} \right)+3xy\left( {{{x}^{2}}+{{y}^{2}}} \right)$ biết $ \displaystyle x+y=1$
$ \displaystyle P=\left( {2x-1} \right)\left( {4{{x}^{2}}-2x+1} \right)-\left( {1-2x} \right)\left( {1+2x+4{{x}^{2}}} \right)$ tại $ \displaystyle x=10$
$ \displaystyle Q={{\left( {\frac{x}{4}} \right)}^{3}}+{{\left( {\frac{y}{2}} \right)}^{3}}$ tại $ \displaystyle xy=4$ và $ \displaystyle x+2y=8$
Bài toán 6: Chứng minh
$ \displaystyle {{\left( {A+B} \right)}^{3}}={{A}^{3}}+{{B}^{3}}+3AB\left( {A+B} \right)$
$ \displaystyle {{\left( {A-B} \right)}^{3}}={{A}^{3}}-{{B}^{3}}-3AB\left( {A-B} \right)$
Áp dụng tính:
a) $ \displaystyle {{21}^{3}}$
b) $ \displaystyle {{199}^{3}}$
c) $ \displaystyle {{18}^{3}}+{{2}^{3}}$
d) $ \displaystyle {{23}^{3}}-27$
Bài toán 7: Rút gọn
a) $ \displaystyle {{\left( {x+y} \right)}^{2}}+{{\left( {x-y} \right)}^{2}}-2{{x}^{2}}$
b) $ \displaystyle {{\left( {x+1} \right)}^{3}}-\left( {x-1} \right)\left( {{{x}^{2}}+x+1} \right)-3x\left( {x+1} \right)$
c) $ \displaystyle \left( {x+2y} \right)\left( {{{x}^{2}}-2xy+4{{y}^{2}}} \right)-\left( {x-2y} \right)\left( {{{x}^{2}}+2xy+4{{y}^{2}}} \right)+2{{y}^{3}}$
d) $ \displaystyle \left( {{{x}^{2}}+\frac{1}{3}x+\frac{1}{9}} \right)\left( {x-\frac{1}{3}} \right)-{{\left( {x-\frac{1}{3}} \right)}^{2}}$
e) $ \displaystyle {{\left( {x-2} \right)}^{3}}-x\left( {x+1} \right)\left( {x-1} \right)+6x\left( {x-3} \right)$
Bài toán 8: Tìm x
a) $ \displaystyle {{\left( {x+2} \right)}^{2}}-9=0$ d) $ \displaystyle \left( {x-1} \right)\left( {{{x}^{2}}+x+1} \right)+x\left( {x+2} \right)\left( {2-x} \right)=5$
b) $ \displaystyle {{x}^{2}}-2x+1=25$ e) $ \displaystyle 5x{{\left( {x-3} \right)}^{2}}-5{{\left( {x-1} \right)}^{3}}+15\left( {x+4} \right)\left( {x-4} \right)=5$
c) $ \displaystyle {{\left( {5x+1} \right)}^{2}}-\left( {5x-3} \right)\left( {5x+3} \right)=30$
Bài toán 9: Chứng minh các biểu thức sau không phụ thuộc vào x:
$ \displaystyle M=\left( {x+4} \right)\left( {x-4} \right)-2x\left( {3+x} \right)+{{\left( {3+x} \right)}^{2}}$
$ \displaystyle N=\left( {{{x}^{2}}+4} \right)\left( {x+2} \right)\left( {x-2} \right)-\left( {{{x}^{2}}+3} \right)\left( {{{x}^{2}}-3} \right)$
$ \displaystyle P=\left( {3x-2} \right)\left( {9{{x}^{2}}+6x+4} \right)-3\left( {9{{x}^{3}}-2} \right)$
$ \displaystyle Q={{\left( {3x+5} \right)}^{2}}+\left( {6x+10} \right)\left( {2-3x} \right)+{{\left( {2-3x} \right)}^{2}}$