- Bài tập tuần 1 – Toán lớp 9
- Bài tập tuần 2 – Toán lớp 9
- Bài tập tuần 3 – Toán lớp 9
- Bài tập tuần 4 – Toán lớp 9
- Bài tập tuần 5 – Toán lớp 9
- Bài tập tuần 6 – Toán lớp 9
- Bài tập tuần 7 – Toán lớp 9
- Bài tập tuần 8 – Toán lớp 9
- Bài tập tuần 9 – Toán lớp 9
- Bài tập tuần 10 – Toán lớp 9
- Bài tập tuần 11 – Toán lớp 9
- Bài tập tuần 12 – Toán lớp 9
- Bài tập tuần 13 – Toán lớp 9
- Bài tập tuần 14 – Toán lớp 9
- Bài tập tuần 15 – Toán lớp 9
- Bài tập tuần 16 – Toán lớp 9
- Bài tập tuần 17 – Toán lớp 9
- Bài tập tuần 18 – Toán lớp 9
- Bài tập tuần 19 – Toán lớp 9
- Bài tập tuần 20 – Toán lớp 9
- Bài tập tuần 21 – Toán lớp 9
- Bài tập tuần 22 – Toán lớp 9
- Bài tập tuần 23 – Toán lớp 9
- Bài tập tuần 24 – Toán lớp 9
- Bài tập tuần 25 – Toán lớp 9
- Bài tập tuần 26 – Toán lớp 9
- Bài tập tuần 27 – Toán lớp 9
- Bài tập tuần 27 – Toán lớp 9 (tiếp)
- Bài tập tuần 28 – Toán lớp 9
- Bài tập tuần 29 – Toán lớp 9
- Bài tập tuần 30 – Toán lớp 9
- Bài tập tuần 31 – Toán lớp 9
- Bài tập tuần 32 – Toán lớp 9
- Bài tập tuần 33 – Toán lớp 9
- Bài tập tuần 34 – Toán lớp 9
- Bài tập tuần 35 – Toán lớp 9
BÀI TẬP TUẦN 23: Luyện tập giải toán bằng cách lập hệ phương trình. Góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn.
Bài 1: Một mảnh đất hình chữ nhật có chu vi 80m. Nếu tăng chiều dài thêm 3m, tăng chiều rộng thêm 5m thì diện tích của mảnh đất tăng thêm $ 195{{m}^{2}}$. Tính chiều dài, chiều rộng của mảnh đất.
Bài 2: Hai vòi nước cùng chảy vào một bể cạn thì sau 1 giờ 30 phút sẽ đầy. Nếu mở vòi thứ nhất trong 15 phút rồi khoá lại và mở vòi thứ hai cho chảy tiếp trong 20 phút thì được $ \frac{1}{5}$ bể. Hỏi nếu mỗi vòi chảy riêng lẻ thì sau bao lâu sẽ đầy bể?
Bài 3: Đem một số có hai chữ số nhân với tổng các chữ số của nó thì được 405. Nếu lấy số được viết bởi hai chữ số ấy nhưng theo thứ tự ngược lại nhân với tổng các chữ số của nó thì được 486. Tìm số đó
Bài 4: Hai công nhân nếu làm chung một công việc thì mất 40 giờ. Nếu người thứ nhất làm 5 giờ và người thứ hai làm 6 giờ thì hoàn thành $ \frac{2}{15}$ công việc. Hỏi nếu mỗi người làm riêng thì mất bao nhiêu giờ mới hoàn thành công việc?
Bài 5: Một bè nứa trôi tự do theo vận tốc dòng nước từ bến A và một canô ròi bén A đề xuôi dòng sông. Canô xuôi dòng được 96km thì quay lại A. Cả đi và về hết 14 giờ. Trên đường quay về A, khi còn cách A 24km thì gặp bè nứa nói trên. Tính vận tốc của canô và vận tốc dòng nước.
Bài 6: Cho đường tròn (O) trong đó có ba dây bằng nhau AB, AC, BD sao cho hai dây AC, BD cắt nhau tại M tạo thành góc vuông AMB. Tính số đo các cung nhỏ AB, CD.
Bài 7: Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Vẽ dây AC của đường tròn (O) tiếp xúc với đường tròn (O’). Vẽ dây AD của đường tròn (O’) tiếp xúc với đường tròn (O). Chứng minh rằng:
a) $ A{{B}^{2}}=BC\,.\,BD$
b) $ \frac{BC}{BD}=\frac{A{{C}^{2}}}{A{{D}^{2}}}$
Bài 8: Từ một điểm A ở bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tròn tại M, cắt CD tại E và cắt tia phân giác của góc BAC tại H. CMR:
a) $ AH\bot BE$
b) $ M{{D}^{2}}=MB\,.\,ME$
Bài 9: Cho đường tròn (O) và dây AB. Gọi M là điểm chính giữa của cung nhỏ AB và C là điểm nằm giữa A và B. Tia MC cắt đường tròn tại một điểm thứ hai là D.
a) CMR: $ M{{A}^{2}}=MC\,.\,MD$
b) Vẽ đường tròn (O’) ngoại tiếp tam giác ACD. Chứng minh rằng AM là tiếp tuyến của đường tròn (O’) ngoại tiếp tam giác ACD.
c) Vẽ đường kính MN của đường tròn (O). Chứng minh ba điểm A, O’, N thẳng hàng.
Bài 10: Cho đường tròn (O) và một dây AB. Vẽ đường kính $ CD\bot AB$ (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy một điểm M. Các đường thẳng CM và DM cắt đường thẳng AB tại E và F. Tiếp tuyến của đường tròn tại M cắt đường thẳng AB tại N. Chứng minh rằng N là trung điểm của EF.